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NOMENCLATURE

s S

SOSN8 A

<

is the compliance;

~ 1s the modules of elasticity of the beam material %;

is the moment of inertia m?;

dimentionless local compliance function;

is the depth of th.e crack;

is the depth of the specimens;

the distance from the crack position to the clamped end:

total length of the beam;

rad. )
’

is the natural frequency (

spring constant at the damped end (N'"‘ );

rad.

spring constant at the crack location (£2);

are constants, i=1,2;
are constants, i=1,2;
are constants, 1=1,2;

are constants, i=1,2;

V-V,

normalized voltage which equal to ViV

the voltage at the tip of the specimens in mv;
the voltage at the clamped end of the specimens in mv;

the voltage at any location on the specimens in mv;

xii
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GreekSymbols

Gi
7

T

the mass of the beam per unit length ’;‘f

are constants, i=1,..., 4;
are constants, i=1,...., 12;

are constants, i=1,...., 8;

2

is constant, where A* = &%

1
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ABSTRACT

The fnain topic of this study is to examine theoretically and experimentally the
dynamic behaviour of cracked cantilever beams. The effect of the crack over the
natural frequency of the first mode was the bases of this examination. The cutcome
of this detailed examination helps in discovering and detecting the crack parameters,
both: the location and the depth.

In this study, one of the old ways of detecting cracks was re-examined. Few
faults were discovered in that method . A new method for crack deteciion which
is thought to be more effective and comprehensive is proposed lo replace that old
one. Computer programs were developed in order to solve the equalions that have
been derived in this study. The solution of these equations delivered the theorelical
parameters necessary for crack identification. Finally, several conclusions and rec-
ommendations are ciscussed to open new a.reas; in utilizing vibration techniques in

crack detection.
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Chapter 1
INTRODUCTION

The increased demand on improﬁng quality and methods of maintenance has led
researchers to look for new and inexpensive methods in testing épecimcus. No doubt,
that using the vibration techniques is cheaper and easier than the Radiographic
and Ultrasonic methods. In addition , the vibration techniques are non-destructive
techniques.

Beams that are made of Mild Steel are used enormously in constructions. It
would be useful if we could study these beams specially the cantilever heams. This
study will focus attention on cantilever beams and the effect of damage over dy-
namic response for beams that have cracks or slots. Cracks have an effect on beam
compliance. Accordingly, this leads to an influence on mode shapes of Lhe specimens
specially on the first mode. This phenomenon was employed in this study to delect
cracks ( its location and depth).

In this research a bending spring is used to model the crack. Also a bending
spring is used as a representation of the partially restraint end. Therelore, the
dynamic behaviour parameters (for example; natural frequency, amplitndes, ... etc)
for the specimens could be evaluated theoretically.

The method of vibration to detect cracks is a new one, and slill needs more

research work, specially to make sure that conclusions of these research are reliable.
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This method is employed in this study in order to get a systematic procedure that
could be followed in testing cracked cantilevers. This study might be a contribution
in a comprehensive technique in testing frame structures in the future.

In 1990 a new method was suggested to detect cracks, but it was not adequately-
effective. In the present work few faults were discovered in that method. So a new

method is proposed to replace it. Previous studies are covered in the next Clapter

1.1 Thesis Layout

Following this chapter, a literature Review is presented in Chapter IL. Chapter
III contains the theoretical derivation of the equation of motion. The experimental
set-up and data collection are presented in Chapter 1V. Chapter V include the results

and discussions. The conclusions and recommendations are stated in Chapter VI.
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Chapter 2

LITERATURE REVIEW

The problem of crack identification and the crack effect over the dynamic re-
sponse has been studied by many investigators. Chondros and Dimarogonas [1],
modeled the crack as a local flexibility determined using fracture mechanics meth-
-ods. They measured it experimentally and developed spectral method lo identify
cracks in various structures. They related the crack depth to the change in natural
frequencies of the first three harmonics of the structure for known crack position.
Dimarogonas [2], and Dimarogonas and Paipetis (3] calculated the hending spring
constant kr in the cracked section of a beam with orthogonal cross-section of width

b and high h as shown in Figute 2.1. The spring constant Kr is calculated for a

lateral crack of uniform depth, using the crack strain energy function. They found

that !

1
Rgom = 9.
r=- (2.1)

¢ = (5.3461/EI)I(a/h)
Where cis the compliance, E is the modules of elasticity of the beam material, I is
the moment of inertia of the beam cross-section. The dimensionless local compliance

function I{a/h) is computed from the strain energy density function and has the

rom Rizos et al. {13}
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form.

I(a/h) = 1.8624(a/R)’ — 3.95(a/h)® + 16.375(a/h)* — 37.226(a/R)"
+76.81(a/h)® — 126.9(a/k)" + 172(a/h)® — 143.97(a/h)"
+66.56{a/k)"

Anifantis et al. [4] further developed the spectral method for iclen!.iﬁcal,ioﬁ the
earth-quake induced defects in reinforced concrete frames by analysis of the changes
in the vibration frequency spectral. They also showed that any localized damage,
such as a crack, would affect each vibration mode differently for various structures
depending on particular location, orientation, and magnitude of the crack. Kirsh-
mer [5], Thomson [6], and Petroski [7,8] illustrated the effects of cracks on struc-
tural response through simple reduced section models ,Of cracked beams using energy
methods. They discussed the effect of size and location of the crack on the natural
frequency and vibration mode of the damnaged beam. Grabowski [9] came to the
conclusion that there is a strong dependence of vibration behavior af cracked rotors

on the crack position and magnitude.

Inagaki et al. {10] estimated the crack size and position by naturai vibration anal-

ysis and by static deflection analysis in the case of transverse vibralions of cracked

rotor.

Christides and Barr {11] derived the equation of bending motion for a Bernoulli-
Euler beam containing pairs of symmetric open cracks. The cracks were taken to

be normal to the beams neutral axis and symmetrical about the plane of bending
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as shown in Figure 2.2. They used an exponential-type function to marlel the stress
concentration near the crack tip. The rate of stress decay from the crack was con-
trolled by a dimensionless parameter « that was determined by fitting the analytical
results with experimental data. The assumptions of Christides and Dare for cracked
beam in bending are those of Bernoulli- Euller theory, except that the normal stress
and strain are modified to account for the stress concentration near the crack tip.
Rajab and Al-Sabeeh [12] analytically derived expressions and presented plots
relating the crack depth and location of cracked Timoshinko shaft in the first few nat-
ural frequencies of the shaft as shown in Figure 2.3, these expressions were obtained
by modeling the crack as bending and shear compliances of équivalunl. incremental
strain energy by using the J-integral concept from fracture mechanics. It is shown
that knowledge of the changes in the first three natural frequencies relative to esti-

mate the crack depth and crack location in the shaft.

Rizos et al. [13] related the measured vibration amplitude to the cracks location
and depth, they used analytical and experimental results of flexural vibration of
a beam with rectangular cross-section having a transverse surface crack extending
uniformly along the width of the beam. The crack was represenied by bending
spring. The value of this spring was estimated by utilizing eq.(2.]), which is men-
tioned above. They mentioned that, from the measured amplitudes al two points of
the structure vibrating at one of its natural modes, the crack localion and its mag-
nitude can be estimated with satisfactory accuracy. Table (2.1) shows their results,
while Figure 2.4 shows the measured first three mode shapes for cracked beam has a
crack at 140mm position from the clamped end and at a depth of J0mm. A 300mm

cantilever beam of cross-section 20mmx20mm was used in that study. Figure 2.5
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shows the measurement system used in that study.

Caweley [14] reports a series of tests on a cantilever beam with slots of different
depths located at 1 millimeter from the root. The beam was 250 mm long, 15 mm
wide, and 10 mm deep. The slots were introducing a 1.6 mm diameter cutter. These
slots have uniform depth across the cross section of the beam. The changes produced
by these slots of different depths in the natural frequencies for the first four modes
of flexible axis of the beam were measured. Subsequently, attempls were made to
predict the size of the natural frequency changes using finite element analysis. The
element used was two dimensional, and the analysis was carried out using the FINEL
package developed at Imperial college. The defect was modelled by unpiuning nodes
zltt the root of the beam. The results of this analysis i"or modes | and 4 are shown
as solid lines in Figure 2.6, where the solid line represent the measured results. It is
clear that the predicted changes due the cracks are significantly smaller than those

- measured for slots.

Caweléy et al. [15] have studied the effect of slot width on the natural frequency
changes produced by the introduction of slots in beams they found thal the natural
{requency changes do increase with increasing slot width. IHowever, their resulls
were for slots which where much wider than the cracks , this was done by testing
specirpens with slots of the profiles shown in Figure 2.7, all of which had a width
of 1.6 mm. It was found that the natural frequency changes produced by slots of
different profiles correlated well with the reduction in the second moment of area
of the cross section of the bar at the defect location about the center of area of
the section. This is demonstrated in Figute 2.8, which shows the natural frequency

change in the third wode as a function of the change in second moment of the cross
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section at the defect location for all the sets carried out with slots 1.6 myn wide.

Ismail et al. [16] mentioned that vibration measurements can offer an effective,
inexpensive, and fast means of nondestructive testing of structures. iheir work inves-
tigated of the effect of crack closure on the frequency changes of crucked cantilever

beams. The study has been conducted by using both computer simulations and

experimental modal analysis.
2.1 Significance of The Study

Taking the previous research in consideration, the use of vibralion methods in
4detecting cracks is new. However, it still needs more research and stndies lo increase
its reliability. Particularly, the effect of crack on the fundamental mode and on the
dynamic beha.viof of the beam. This stndy will examine these issucs theoretically

and experimentally. Anew procedure is described for crack identification as a new

contribution in this area.
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” -
'Ellliilrrr[illlllrrrrrrltlflrnfllrrrrrrr|!llllrrrl‘|’;-1rrr
jus 1

first mode

[ETELIITYR

LI
~ G'E second mode
- E u
S osf 3
] a
4 : :
g osg 3
third mode i
) g
0‘80 Q1 Q2 a3 o4 Qs Q6

Crack Location ¥

Figure 2.3: The crack depth Vs. crack location for the shaft[!2]
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Measured Error Lrror
— e Caleulated Calculated - - -

Position  Deplh position Y r.ms depth T r.m.s.
10 2 10-31 300 2-08 4-00
6 9.92 «1:00 5-RY —1-R}

10 10-41 4:00 3937 10-40 4-00 HdF
14 10-62 6-00 14-72 T4
20 2 7861 1-7% 195 =280
. ] £1-9} 112 632 hEA R

8 & =

10 RY-3t 4-12 3561 9-82 - 180 4=tag
14 7191 =012 14-90 642
140 2 138-72 -0:92 191 -4-50

6 139-4] -4-42 = 6-18 6-1) -

10 145- 81 192 +144 9.71 —2-00 b
14 146-71 4-78 13-44 -4-00
00 2 00-72 0-}% 2410 £.00
6 2013 0-05 5-60 ~h-hé

o 10 210-43 5:20 J6ed 9-45 5-50 i
w2 : 14 189.72 -5-15 13-95 ~0-16
260 2 275-R1 607 213 650
6 215-22 -9.54 S-3R ~21-R3

605 D . .

1 278-72 7.00 P 9.31 aeen

14 240-R1 -7-38 15-7% 13-4

Table 2.1: Comparison of actual and estimated crack position and depth ( all di-
mension in mm){13]

r
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Figure 2.4: Comparison of measured (- - -) and calculated (—) results for the lowest
three vibration modes. (a) First mode. 171 Hz. (b) second mode. 987 l{z. (c)third
mode. 3034 Hz [13]
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Figure 2.6: Experimentally measured natural frequency changes due in slots 1.6mm
wide, lmm from the root of a cantilever beam, together with finite element predic-
tions obtained by unpinning nodes at the root of the beam(w=0) and by modeling
the defect as a slot 1.6mm wide (w=1.6mm) [14]
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Figure 2.7: Slot profiles tested.(I=second moment of area of section about an axis
through the center of area of the section, parallel to the base of the section.){15]
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Figure 2.8: Variation in third mode natural frequency with second moment of area
of damaged section for beams with slot profiles shown in the previons Figure[15]
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Chapter 3

THEORY and
MATHEMATICAL MODELING

In this chapter, the theoretical derivation for the cantilever beam using Euler
equation will be discussed. A set of assumptions is developed to make the theoretical
study feasible. In the following, the governing equations are deriverd using some

simplifying assumptions.

3.1 The Basic Equation and The Simplifying As-
sumptions

The basic equation that governs the motion of an elastic beam is given by Euler
equation which states that

EIZY — puly = (3.1)

Where

p= mass of beam per unit length (£2)

d.
‘Fcl;I )

w= natural frequency (
E= modules of elasticity (,f—;)

I= area moment of inertia (m*)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



14

By making

2

X‘:pw
Er

One obtains the following forth order differential equation:

d‘!
d—ﬁ_)ﬁy:q (3.2)

For the vibration of a uniform beam. The general solution for this equation is:
y = AcosAz + Bsindz + Ceoshdz + Dsinhiz

In order to deal with this equation for the purpose of crack identification, the

following assumptions are made

1. The crack is assumed open. This assumption is expected to be realislic because
the crack is usually found in areas which are exposed to heavy weights, which
naturally lead to an open crack. As a result of this assumption the crack is

replaced by a torsional spring.

2. It is assumed that the crack is regular over the surface of the specimnen, and

uniform in prepagation and found in one face of the sample.

3. Torsional spring is assumed to be at the clamped end, since the beam is par-
tially restrained. This assumption consider gives a more accurale description

of the restrained.
4. Shear deformation and Rotary inertia effects are ignored.

5. It is assumed that there are two amplitude functions for the cracked specimen,
the first function represents the amplitude before the crack and the second

represents the amplitude after the crack.
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3.2 Crack Compliance

According to Rizos et al. {13], the crack compliance depends en the crack
orientation and magnitude with respect to the main dimensions of cracked beam.
Also it depends on applied loading and the mode of deformation. Dimarogonas [2]
and Dim'arogona.s and Paipeties [3] calculated the crack compliance using the crack
strain energy function. They found out that

Kr = (3.3)

Q| =

¢ = (5.346h/ EI)I(a/R)

Where c is the compliance, K1 is the bending spring constant, E is the modules of
elasticity of the beam material, I is the moment of inertia of the beam cross-section
and I(a/h) is the dimensionless local compliance. It is derived for sleain energy

density functions and it is give by
I(a/h) = 1.8624(a/h)? — 3.95(a/k)® + 16.375(a/R)* — 37.226(a/h)’

+76.81(a/k)® — 126.9(a/k)” + 172(a/k)® — 143.97(a/h)"

+66.56(a/R)"

3.3 Cracked Beam Mode

The crack is assumed to be open and to have uniform depth as shown in Figure
3.1. It is known that the modes of harmonic vibration apply on the lwo parts of
the beam, left and right of the crack respectively. The equations of motion can be

written as
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Figure 3.1: Cracked beam
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The general solutions for these equations is

n(z) = Aysindz + Bycoshz + Cysinkdz + DycoshAz (3.5j
v2(z) = Azsindz + Bycoshz + Cysinhde + DycoshAz (3.6)
where
2
2 = %

The coefficients in equations (3.5) and (3.6) are evaluated using the boundary

conditions as shown in the next section.
3.4 Application Of The Boundary Conditions

To apply the boundary conditions, the beam is modeled using two springs. One
at the damped end to represent the restraint compliance. The second at the erack
to represent the crack compliance. Consider Figure 3.2 for the boundary conditions

application. The transverse displacement at the clamped end is staterl as

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Yl(x.) I Y2(X)
1 Kr !
g Jo x
.
Figure 3.2: Analytical beam
Substituting equation (3.7) into equation (3.5}, leads to
.Bl = —Dl (38)

The rotation at the left end of the beam is partially restrained, therefore one can

represent this condition by a torsional spring of stiffness K Fm a5 shown in figure

rad

3.2. This condition can be written by expressing moment equilibrium at the left
EIyn(0) = Ky1/(0) (3.9)

Substituting equation (3.5) into equation (3.9), leads to

K
(4 +G) = Dy ~ By (3.10)

Substituting equation (3.8) into equation (3.10), results in

N

E'I/\(Al +C)=2D,
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Solving for Iy, one obtains

K
Dy = 2EI/\(A1+CI)

Substituting equations (3.11) and (3.7) into equation (3.5), one obtains

n(z) = AsinAz — at ———(A; + C1)cosAz

2ET
+Cysinhlz + -Q—ETX(AI + Cy)coshrz
equation (3.12) can be rearranged as
= A (sindz + A (coshAz — cosdz))+
nEa 2E1A

Ci(sinhdz + (coshAz — cosAz))

K
2E1A
At the free end of the beam, the moment must be zero, therefore

v (L) =0

Substituting this condition into equation (3.6), one obtains

ciz AAzcosAz — ABysinAz + ACscoshiz + ADysinhlr
%:;2 = =2 Aysindz — A? BycosAz + A2Cpsinkdz + A2 Dycoshir

Substituting into y,/#7{L) = 0, leads to
HA28inAL + BacosAL = Cysinh AL + Bycosh
At the free end of the beam the shear must be zero
yM(L) =10

Substituting this condition into equation (3.6}, one obtains

arsyz

dz?

= —N*A,cosdz + N Bysindz + A3 Chcoshdz + X D,sinhAz

18

(3.11)

(3.12)

(3.13)

(3.14)
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Substituting into y;#/(L) = 0, one obtains

Ayco3A L = BysinAL + CycoshAL + DysinhAL (3.15)

Substituting equation (3.15) into equation (3.14), leads to

B;(sinAL)? + CycoshALsinAL + DasinhALsinAL + B;(cosA 1)?

= CysinhALcosAL + DycoshALcosAL

solving for B;, one obtains

Cy(sinhALcosAL — coshALsinAL)
(sinAL)? + (cosAL)?

Di{coshALcosAL — sinhALsinAL)
(sinAL)? + (cosAL)?

B:=

For this equation, let

By =4, Ca + 9, D, (3.16)
where 1, and 1), are constants
Substituting equation (3.16) into equation (3.15) and solving for A,, leads to

coshAL sinhAL
cosAL 1L cosAL

4, = (1!)1 sinAL " cosh/\L) G+ (¢23m)\L i smh/\L) D,

Ay = (1 Cy + ¥ Dy)tanAL 4 C;

cosAL cosAL cosAL cosA L

For the last relation, let

Ay = Y30y + 94 Dy (3.17)

Where; and 14 are constants

substituting equation (3.16) and equation (3.17) into equation (3.6), leads to

yz(::) = (1‘"302 + ¥4 Dy )ain,\:r: + (1,’1102 + 1 Dg)co.s)m

+Cysinhdz + Dycoshiz
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This equation can be rearranged as

y2(z) = (YrcosAz + Pysindz + sinhAz)C, (3.18)

+(P2co8Az + YPysindz + coshAz) D,

As shown in figure 3.2 the deflection condition at the crack location is

vi(L1) = (1)

Substituting equation (3.13) and equation (3.18) into this condition, one obtains

A]_ (.sin/\Ll +

K
S FiL (coshALy — cosALy )+

Ci(sinhALy + (coshALy — cosAL,))

K
2EI)
= ($1cosA Ly + YasinAL, + sinhAL,)C,

(¢2C031\L1 + ¢4 sinALl + COShz\L1 )Dz

Rearrange this equation as

D, = (sin/\Ll + ;-é—{a(cosh)\Ll - cos)\Ll)) 4,

¢2 CDJI\Ll + 1/)431:71.)\]:11 + COShALI (319)

sinhAL; 4+ %H(cash.\Ll — cosAly) c
acosAL; + YusinALy + coshAL, :

1p1608AL1 + ¢3Sin/\L1 + SinhALI C
YpcosALy +asinALy + coshAL, ] °

From compatibility condition for rotation of flexibility,
El
ni L)+ f{—yl”(fq) =1/(L1)
T
Substituting equation (3.13) and equation (3.18) into this condition, rne obtains

AAy(cosAL, +

2;5,’\ (SinhALl + .sin/\Ll ))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



+AC:(coshALy 4 (sinhAL, + sinAL;))

K

2EIA
,\2

(—-—;E)(Al(—sin)\Ll +
Kt

QE{{I/\ (coshAL; + cosALy))

+C1(sinkAL, + (coshALy + cosAL,)))

K
2ET1X
= a\(""‘!,bl sinf\Ll -+ '!paCO-SALl -+ COShALl )Cz
+A(—23inAL; + P4co8AL, + sinkAL,)D,

From this equation one obtains

D, = [t sarx(8inkALy + sinALy) "
—25inA Ly + YycosALy + sinhAL, ) !

N (’%{)(—-sinALl + secx(coshALy + cosAL,)
—y8inA L, + scosAL, + sinhAL, !

—8inALly + PycosA L, + sinhAL,
. ((‘,‘{i‘r (sinhALy + 5K~ (coshAL, + cosAL, )))
1

(coshx\Ll + ;é%(sinh)\LI + sin,\Ll)) o
1

—¥28inALy + YPscosAL; + stnkAL,

B —Yn9inALly + YacoshAL, + coshAL, c
—psinALly + 1PycosALy + sinhAL, 2

Equation (3.20) and equation (3.19), leads to

Ar(sinALy + 85 (coshALy — cosALy))
¢2€081\L1 + ",b4.51..ﬂ.AL1 + COShz\Ll

] Cy(sinhAL, + Eé—%(coshz\fq —cosALy))
¢QCO.S.\L1 + 1,b43inAL1 + CO.Sh/\Ll

_ (¥1cosALy +P3sind Ly + sinhAL, c
PacosALy + Pasind Ly + coshALy | °

(cos)\Ll + ﬁKf;(sinh,\Ll + sinALl)) 4
1

—38itnA Ly + YycosA Ly + sinhAL,
N ( (3 )(—sinALy + 5255 (coshALy + cosAL, )) 1

—tesinA Ly + PycosAL, + sinhAL,

N (co.sh)\Ll + sE<(sinhALy + sin)Ly) o
—y5indLy + scosALy + sinkAL, |

21

(3.20)
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(‘\f{%’)(ainh/\Ll + 555 (coshALy + cosALy))
T T et B ecoi Ty A '

_ —~y8tnALy + YzcoshALy + coshAL, c
—~1)28in ALy + ycosALy + sinhAL, | *

For this equation, let
ML +mCy + 130 = Ay + 15 Ay (3.21)

+neCy + 1 Cy + 1Cs

Where ;(i=1,...8) are constants

Solving for C; from equation (3.21), one obtains

c, = (Al('rh ~ s —15) + Ci(m2 — s — m))
s — 13

For this equation, let
Cy = Y5 A; + 6Cy (3.22)

Where 5 and s are constants.

Substituting equation (3.22) into equation (3.19), one obtains

_ [sinAL, + ﬁ;{ﬁ(coshALl — cosALy) |
N Yaco8A Ly + YysinA L, + coshAl, !

PecosALy + YysinAly, + coshAl,

_ PhcosALy + Pa8indALy + sinhAL,
YacosALy + YysinALy 4+ coshAL,

(sinhALl + 55 (coshAL, — cosAL;))
1

) (s AL + s C))

From this equation, one obtains

D, = A, (sinALl + EEL{H(coah,\Ll —COSALI))

PacosALy + Pysind Ly + coshAL,

_ PcosALy + YasinA L, + sinhAL, ()
Wac08ALy + 48inALy + coshAL; ‘"
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+c, sinhALy + 72~ (coshAL, — cosALy)
YaeosAL, + YysinALy + coshA L,

_ ¢1C031\L1 + ¢35inAL1 + 3inh.\L1 (1‘b )
Yocos ALy + gsindLy + coshAL, v ¢

For this equation, let

Dy = Ay + 1 Cy (3.23)

Wherte v; and )3 are constants

Substituting equation (3.22) and equation (3.23) into equation (3.18), leads to
y?(m) = (rcosdz + Pssindz + sinhAz)(Ps Ay + ¥ Cy)
HhzcosAz + Yysindze + coshrz)(Yr Ay + ¢ C)
From this equation one ob‘tains
v2(z) = A [Ys(Y1coshz + Yasindz + sinhlz)) {3.24)

b7 (P2c08Az + Pasindz + coshiz)]
+C [Ys(¥rcosAz + Ysindz + sinhAz))
+1bs (YacosAz + Pysindz + coshiz)]

Moment Eq